INCREMENTOS:
Cuando una cantidad variable pasa de un valor inicial a otro valor, se dice que ha tenido un incremento. Para calcular este incremento basta con hallar la diferencia entre el valor final y el inicial. Para denotar esta diferencia se utiliza el símbolo ∆x, que se lee "delta x". El incremento puede ser positivo o negativo, dependiendo de si la variable aumenta o disminuye al pasar de un valor a otro. Por ejemplo, si el valor inicial de una variable x, x1, es igual a 3, y el valor final x2 es igual a 7, el incremento ∆x = x2 - x1 = 7 - 3 = 4: la variable se ha incrementado positivamente en 4 unidades. En cambio, si el valor inicial es 7 y el valor final 3, ∆x = x2 - x1 = 3 - 7 = -4: la variable ha tenido un incremento negativo (decremento) de 4 unidades.
RAZON DE CAMBIO
Comenzando por la Razón Instantánea de Cambio de una función cuya variable independiente es el tiempo t. suponiendo que Q es una cantidad que varía con respecto del tiempo t, escribiendo Q=f(t), siendo el valor de Q en el instante t. Por ejemplo
El tamaño de una población (peces, ratas, personas, bacterias,…)
La cantidad de dinero en una cuenta en un banco
El volumen de un globo mientras se infla
La distancia t recorrida en un viaje después del comienzo de un viaje
El cambio en Q desde el tiempo t hasta el tiempo t+∆t, es el incremento
La Razón de Cambio Promedio de Q (por la unidad de tiempo) es, por definición, la razón de cambio ∆Q en Q con respecto del cambio ∆t en t, por lo que es el cociente
Definimos la razón de cambio instantánea de Q (por unidad de tiempo) como el límite de esta razón promedio cuando ∆t→0. Es decir, la razón de cambio instantánea de Q es
Lo cual simplemente es la derivada f´(t). Así vemos que la razón de cambio instantánea de Q=f(t) es la derivada
La interpretación intuitiva de la razón de cambio instantánea, pensamos que el punto P(t,f(t)) se mueve a lo largo de la gráfica de la función Q=f(t). Cuando Q cambia con el tiempo t, el punto P se mueve a lo largo da la curva. Pero si súbitamente, en el instante t, el punto P comienza a seguir una trayectoria recta, entonces la nueva trayectoria de P corresponde que Q cambia a una razón constante.
También como conclusión tenemos que si la pendiente de la recta tangente es positiva ésta es ascendente y si le pendiente es negativa ésta es descendente, así
Q es creciente en el instante t si
Q es decreciente en el instante t si
La derivada de cualquier función, no solamente una función del tiempo, puede interpretarse como una razón de cambio instantánea con respecto de la variable independiente. Si y=f(x), entonces la razón de cambio promedio de y (por un cambio unitario en x) en el intervalo [x,x+∆x] es el cociente
La razón de cambio instantánea de y con respecto de x es el límite, cuando ∆x→0, de la razón de cambio promedio. Así, la razón de cambio instantánea de y con respecto de x es
Interpretación geométrica de la derivada
Cuando h tiende a 0, el punto Q tiende a confundirse con el P. Entonces la recta secante tiende a ser la recta tangente a la función f(x) en P, y por tanto el ángulo α tiende a ser β.
La pendiente de la tangente a la curva en un punto es igual a la derivada de la función en ese punto.
mt = f'(a)
Dada la parábola f(x) = x2, hallar los puntos en los que la recta tangente es paralela a la bisectriz del primer cuadrante.
La bisectriz del primer cuadrante tiene como ecuación y = x, por tanto su pendiente es m = 1. Como las dos rectas son paralelas tendrán la misma pendiente, así que:
f'(a) = 1.
Porque la pendiente de la tangente a la curva es igual a la derivada en el punto x = a.